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Abstract: - The boundary layer slip flow with heat transfer over a permeable exponential shrinking sheet with mass 
flux at the boundary is studied. Using similarity transformation in exponential form, similarity equations are 
obtained which are then solved numerically by finite difference method using MATLAB solver bvpc45. The 
numerical results show that dual solutions exist beyond a certain value of mass suction and the range of mass 
suction parameter for which the solution exists expands with the velocity slip parameter. A stability analysis has 
been conducted to show that first solution branch is stable while the second is always unstable. 
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1 Introduction 
The phenomena over stretching sheet have a wide 
range of applications in aerospace, production of 
polymers, metal casting. Metal or more commonly an 
alloy, is heated till the molten state is achieved and 
then it is transferred into a die. A state of liquid 
contraction is achieved when a melting issue from a 
die comes out so it drops its heat and contracts on 
cooling. The desired product is obtained by stretching 
the hot metal issue from the die. The atoms of the 
metal lose energy on further cooling and loss of 
latent heat of fusion and closely bound together in a 
regular structure. The nature of the final product 
depends on the process of stretching and the rate of 
heat transfer at the surface.  
The study of boundary layer flow due to a stretching 
sheet is initiated by Crane [1]. He obtained an 
analytical solution by assuming the linear velocity 
variation. Many researchers e.g. Gupta and Gupta 
[2], Grubka and Bobba [3], Vajravelu [4], Ali and 
Mehmood [5], Ishak et al. [6], Kazem et al. [7], 
Sharma [8], Sharma et al. [9] extended the work of 
Crane [1] under different physical situations by 
including the effect of heat transfer analysis. 
Vajravelu [4] examined the case in which the wall is 
being stretched with a variable velocity and the free-
stream velocity is constant. Sharma [8] investigated 
the unsteady flow with heat transfer past a stretching 
surface embedded in a porous medium with viscous 

dissipation and heat source effect using element free 
Galerkin method. Sharma et al. [9] studied the 
nanofluid flow driven by a stretching sheet including 
the effect of partial slip condition on the boundary. 

Wang [10] was the first to investigate but gave only 
a little information about the flow past an unsteady 
shrinking sheet film. Later, shrinking sheet problem 
was investigated by Miklavcic and Wang [11], they 
established the existence and uniqueness criteria for 
similarity solutions of this problem if to restrain 
vorticity, sufficient suction on the surface is applied. 
Further, this problem was investigated by Fang and 
Zhang [12], Cortell [13], MerkinandKumaran [14], 
Sharma et al. [15] and many others. Sharma et al. 
[16] have investigated the stagnation point flow of a 
micropolar fluid over a stretching/shrinking sheet 
with second-order velocity slip. Recently, Fauzi et al. 
[17] have studied the flow and heat transfer over a 
stretching and shrinking sheet with slip and 
convective boundary condition. 

In most of the circumstances, fluid normally sticks 
to the boundary and no-slip condition is consistent 
with the flow problem. Many fluids with particulates, 
such as emulsions, suspensions, foams, polymer 
solution etc., with slip between the fluid and the 
surface [18]. In this article, we have investigated the 
boundary layer flow and heat transfer problem over 
an exponentially shrinking sheet with thermal slip 
effects as proposed by Beavers and Joseph 
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[19].Analytical solution is hard to find out because of 
nonlinearity of the mathematical model. Therefore, in 
this study, numerical simulation has been performed 
using MATLAB boundary value problem (BVP) 
solver bvpc45. 
 
 
2 Problem formulation 

Alaminar boundary layer flow of a viscous and 
incompressible fluid over a permeable exponentially 
shrinking sheet coinciding with the plane y 0= is 
considered. Flow is constrained in the region y 0≥  as 
shown in Fig. 1. Wall shrinks by keeping the origin 
fixed on applying two equal and opposite force along 
sheet towards origin. Further, let the mass flux 
velocity is wV (x) with wV (x) 0>  for injection or 
withdrawal of the fluid and wV (x) 0<  for suction. 

Under these assumptions the governing equations 
of the flow in dimensions are as follows:  

u v 0
x y

∂ ∂
+ =

∂ ∂                                                             
(1) 

2

2
u u uu v
x y y

∂ ∂ ∂
+ = ν

∂ ∂ ∂
                                                (2) 

2

2u v
x y y

∂Τ ∂Τ ∂ Τ
+ = α

∂ ∂ ∂
                                             (3) 

where u  and v  are the velocity components in the 
x  and y  directions, Τ  is the fluid temperature, α  is 
the thermal diffusivity, ν  is the kinematic viscosity. 
The corresponding boundary conditions are: 

w w
uv V (x), u U N , D at y 0
y y

u 0, as y∞

∂ ∂Τ
= = + ν Τ = Τ + =

∂ ∂
→ Τ→ Τ →∞           

(4) 

Where w 0 1V (x) V exp(x / 2L )= mass flux velocity, 

0 1U U exp(x / L )= − is the shrinking velocity, 

w 0 1T T exp (x / 2L )= is the variable temperature at the 
sheet. Here 1 0 0L , U , Τ  and 0V  are the length, 
velocity, temperature and mass flux velocity 
respectively with 0V 0<  for suction and 0V 0>  for 
injection. More, we assume that 1 1N N exp( x / 2L )= −  
and 1 1D D exp ( x / 2L )= − are the slip velocity factor 
and the thermal slip factor respectively which varies 
with x  , where 1N  and 1D are the initial values of 

velocity and thermal slip factor respectively [20].
N D 0= = is the no slip case. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1: Physical Model and Coordinate System 

Now we introduce the following similarity variables 
(see MukhopadhyayandGorla [21]),   

[ ]

0
1 0 1

1

0
1

1

0 1

U
y exp (x / 2L ), u U exp(x / L ) f ( ),

2 L

U
v exp (x / 2L ) f ( ) f ( )

2L
exp (x / 2L ) ( )

′η = = η
ν

ν ′= − η + η η

Τ = Τ θ η    

(5) 

where prime denotes differentiation with respect to 
η . Substituting (5) into Eqs. (2) and (3), we obtain 
the following ordinary differential equations

2f ff 2f 0′′′ ′′ ′+ − =                                                 (6) 

1 f (f ' f ) 0
Pr

′′ ′+ θ − θ =
                                             

(7) 

with boundary conditions  
f (0) s, f (0) 1 f (0), (0) 1 (0)
f ( ) 0, ( ) 0 as

′ ′′ ′= = − + λ θ = + δθ
′ η → θ η → η→∞        

(8) 

Here 1 0 1
N U / 2L ( 0)λ = ν >  is the velocity slip 

parameter, 1 0 1D U / 2 L ( 0)δ = ν > is the thermal slip 

parameter, 0 0 1s V U / 2 L= − ν is the suction (s 0)>  
or blowing (s 0)<  parameter and Pr /= ν α  is the 
Prandtl number. 

Skin friction coefficient fC  and the local Nusselt 
number Nu  are defined as 

O x 
           Shrinking 

 Shrinking sheet 

y,
 

 Viscous fluid  
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[ ]f 2
y 00 1

1

0 1 y 0

uC ,
yU exp(x / L )

L
Nu

exp (x / 2L ) y

µ
ρ =

=

 ∂
=  ∂ 

 ∂Τ
= − Τ ∂                                

(9) 

 

Using (5) into (12), we get                                        
1/2 1/2

ff (0) (2 Re) C , '(0) (2 / Re) Nuθ′′ = = −              (10)  
Where 0 1 1Re (U L / )exp (x / L )ν=  is the Reynolds 
Number. 
 
 
3 Method of Solution 
A boundary value problem is obtained using a 
nonlinear set of differential Eqs. (6) and (7), along 
with the boundary conditions (8) and is solved 
numerically by finite difference method with fourth 
order accuracy using MATLAB solver bvpc45. In 
this approach, problem is converted into an initial 
value problem (IVP) by introducing new variables. In 
this method, a suitable finite value of η∞  (where η∞  
correspond to η →∞ ) is chosen to obtain 
asymptotically converged solution with the 
maximum residuals less than 10-10for a given set of 
parameters. For computational purposes, η∞  has 
been fixed as 4. It is sufficient to achieve 
asymptotically the free stream boundary conditions 
for all values of the considered parameters. 
First order differential equations are obtained as 

1f y′= , 1 2y y′ = , 2
2 1 2y 2 y f y′ = −      (11)                                 

3y′θ = , 3 3 1y Pr (f y y )′ = − − θ                                     (12)  
with the boundary conditions 

1 2 3f (0) s, y (0) 1 y (0), (0) 1 y (0)= = − + λ θ = + δ            (13) 
Eqs. (11) and (12) with Eq. (13) forms an IVP and 
we need the values of 2y (0) and 3y (0) . The initial 
guess values for 2y (0) and 3y (0)  are choose in such a 
way that the solution must satisfy the conditions (8). 
It is found that within a certain range of S dual 
solutions are obtained with different initial guess 
values. 

However, in order to validate the present method 
of solution, we compare the present results with ones 
from the open literature, we consider the boundary 
layer problem of a viscous (regular) and 
incompressible fluid flow with heat transfer near the 
stagnation-point of an impermeable shrinking sheet, 

which are given by the following equations (see 
Wang [22]) 

2f f f f 1 0′′′ ′′ ′+ − + =                                                  (14)
+( f - f )=0θ θ θ′′ ′ ′                                                (15) 

subject to the boundary conditions 
f (0) 0, f (0) , (0) 1
f ( ) 1, ( ) 0 as

ε θ
η θ η η

′= = =
′ → → →∞                         

(16) 

Table 1 shows the comparison of the present 
numerical results with those of Wang [22] for the 
problem defined in Eqs. (14) to (16), which shows a 
quite good agreement. Therefore, we believe that the 
present results are correct. 
 

Table 1.Comparision of present results with those of 
Wang [22] 

 
 
4 Flow Stability 

As Merkin [23] and Weidman et al. [24] suggested, 
the stability of flow can be checked by considering 
the unsteady model of examined problem as follows:  

u v 0
x y

∂ ∂
+ =

∂ ∂                                                           
(17) 

2

2
u u u uu v
t x y y

∂ ∂ ∂ ∂
+ + = ν

∂ ∂ ∂ ∂
                                      (18) 

2

2u v
t x y y

∂Τ ∂Τ ∂Τ ∂ Τ
+ + = α

∂ ∂ ∂ ∂
                                  (19) 

where t  is the time. 

 

ε  

      Wang [22] 

 Upper      Lower  

 Branch    Branch 

Present results 

    Upper          Lower  

   Branch         Branch 

 2.0 

 1.0 

 0.5 

 0.0 

-0.25 

-0.5 

-1.0 

-1.15 

-1.2 

-1.2465 

-1.24657 

-1.88731 

0 

0.71330 

1.232588 

1.40224 

1.49567 

1.32882   0    

1.08223   0.116702 

 

0.55430           

-1.887306 

0 

0.713295 

1.232588 

1.495670 

1.495670 

1.328817     0 

1.082232     0.1167022 

0.932473     0.233650 

0.554297     0.584281          

0.564015 
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We assume that the initial & boundary conditions 
are given by 

w w

t 0 : v 0, u 0, 0 for any x, y
ut 0 : v V (x), u U N , D at y 0
y y

u 0, as y∞

< = = Τ =
∂ ∂Τ

≥ = = + ν Τ = Τ + =
∂ ∂

→ Τ→ Τ →∞

                                                                               

(20)

 
Using the following similarity variables,   

[ ]

0
1 0 1

1

0
1

1

0
0 1 1

1

U
y exp (x / 2L ), u U exp(x / L ) f ( , ),

2 L

U
v exp (x / 2L ) f ( , ) f ( , )

2L
U

T T exp(x / 2L ) ( , ), exp (x / L ) t
2L

′η = = η τ
ν

ν ′= − η τ + η η τ

= θ η τ τ =
  

(21)  

Substituting (21) into Eqs. (18) and (19), we obtain 
the following differential equations 

( )2 ff f f 2f 1 2 f 0
′∂′′′ ′′ ′ ′+ − − + τ =

∂τ                             
(22)

( )1 '' (f ' f ) 1 2 f 0
Pr

∂θ′ ′θ + θ − θ − + τ =
∂τ                        

(23)  

and the corresponding boundary conditions (20) 
become 

0 : f 0, f 0, 0 for any
0 : f (0) s, f (0) 1 f (0), (0) 1 (0)

f ( ) 0, ( ) 0 as

′τ < = = θ = η
′ ′′ ′τ ≥ = = − + λ θ = + δθ

′ η → θ η → η→∞      

(24)                    

To test stability of the steady flow solution,
0f ( ,0) f ( )η = η and 0( ,0) ( )θ η = θ η satisfying the 

boundary-value problem (6)-(8), we write (see 
Weidman et al. [24]), 

0

0

f ( , ) f ( ) e F( , )

( , ) ( ) e G( , )

− γτ

− γτ

η τ = η + η τ

θ η τ = θ η + η τ                                     
(25) 

where F( , )η τ and G( , )η τ are small relative to 0f ( )η and 

0 ( )θ η respectively, and γ is the eigenvalue. 
Substituting the expression (25) into Eqs. (22) and 
(23), we obtained the following equations

23 2
0 0

03 2 2

2
0 0

f fF F Ff F 4

f fF F1 2 1 2 0

∂ ∂∂ ∂ ∂
+ + − +

∂η ∂η∂η ∂η ∂η

   ∂ ∂∂ ∂
γ + τ − + τ =   ∂η ∂η ∂η ∂η∂ τ      

(26)

2
0 0

0 02

0 0

fG G G Ff F

f f GG 1 2 1 2 0

∂θ ∂∂ ∂ ∂ ∂
+ + − − θ

∂η ∂η ∂η ∂η ∂η∂η

   ∂ ∂ ∂
+γ + γ − + τ =   ∂η ∂η ∂ τ                         

(27) 

subject to the following boundary conditions 
2

2

F FF(0, ) 0, (0, ) (0, ),

GG(0, ) (0, )

F ( , ) 0, G( , ) 0 as 

∂ ∂
τ = τ = λ τ

∂η ∂η
∂

τ = δ τ
∂η

∂
η τ → η τ → η→∞

∂η                 

(28) 

We investigate the stability of the steady flow 
solution 0f ( )η  and 0 ( )θ η  by solving the 
corresponding steady linear eigenvalue problem

 

23 2
0 0

03 2 2

f fF F F Ff F 4 0
∂ ∂∂ ∂ ∂ ∂

+ + − + γ =
∂η ∂η ∂η∂η ∂η ∂η

    (29)

2
0 0

0 02

fG G G Ff F G 0
∂θ ∂∂ ∂ ∂ ∂

+ + − − θ + γ =
∂η ∂η ∂η ∂η ∂η∂η

        (30) 

With the boundary conditions 
F(0) 0, F '(0) F ''(0), G(0) G '(0)
F '( ) 0, G( ) 0 as

= = λ = δ
η → η → η→∞

                    (31) 

Numerical values of 0f ( )η and 0 ( )θ η obtained from 
the solution of (6) and (7), for particular value of λ
and ,δ  an infinite set of eigenvalues are obtained 
from the solution of (29) and (30). The stable flow is 
determined by positive minimum eigenvalue. The 
sign of smallest eigenvalue γ determines the stability 
of steady flow solution 0f ( )η and 0 ( )θ η . Harris et al. 
[25] explained that if boundary condition on F( )η or
G( )η is relaxed and value of γ is fixed, the range of 
possible eigenvalues can be determined.                                                                             
 
 
5 Results and discussion 

The governing boundary value problem defined by 
ordinary differential equations (6) and (7), along with 
the boundary conditions (8) are solved numerically 
using MATLAB routine BVP solver bvpc45 for 
various set of values of the physical parameters. To 
solve this BVP with MATLAB routine BVP solver, 
we need the initial guess values of f (0)′′ and (0)′θ . It 
is found that with different initial guess will result in 
two different solutions. With the earlier analysis for 
the shrinking sheet case (Miklavcic and Wang [11]; 
Sharma et al. [15]; Sharma et al. [16]) duality nature 
of the solution is consistent.  

The effect of velocity slip parameter λ  and thermal 
slip parameter δ with different values of Variation of 
S on the reduced skin friction coefficient f (0)′′ and 
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the reduced local Nusselt number (0)′−θ  are 
presented in Figs. 2-3 and Fig. 4. It is observed that 
when s  is smaller than the critical value cs ( 0)> , there 
is no solution and when cs s> , there are two 
solutions. Based on our computations, the critical 
value of s decreases as λ  increases and is 
independent of the values of δ . Hence, velocity slip 
parameters widen the range of s  for which the 
solution exists. 

 
Fig. 2: Graph of f (0)′′  with s  for various values of λ  

 
Fig. 3: Graph of (0)′−θ  with s  for various values of 

λ  
In Figs. 2-3, f (0)′′  decreases but (0)′−θ increases 

with increasing λ , for the first solution. Thus, the 
surface shear stress decreases but the heat transfer at 
the surface increases with λ . The second solution 
shows quite different and complicated behaviors 
compared with the first solution. For the second 
solution, with the increase in λ , both f (0)′′ and 

(0)θ ′−  decrease, while for 2.54s >  the pattern is 
opposite. In Figs. 4, it is seen that for both solution 
branches i.e. first & second solution, with lower 
values of δ , the value of (0)′−θ  is consistently 

higher . 

 
Fig. 4: Graph of (0)′−θ  with s  for various values of

δ  

 
Fig. 5: Graph of γ  with s  for various values of λ  

Linear stability of the steady flow solution has been 
examined according to Merkin [23] and Weidman et 
al. [24]. According to Merkin [23] and Weidman et 
al. [24], the sign of the smallest eigenvalue 
determines the stability of the obtained solution. The 
positive minimum eigenvalue determines the stable 
flow. Based on this approach, we have converted the 
problem to eigenvalue problem and find out the 
minimum eigenvalue for both the solution shown in 
figure 5 & 6. For first solutions, the eigenvalues are 
always positive, while negative for second solutions. 
Thus, we conclude that the second solutions are 
linearly unstable, while first solutions are linearly 
stable for these particular parameter values. It is also 
observed from Figs. 5 & 6 that stability of first 
solution branch increases with the increase of λ and 
s , while δ  has no effect on flow stability. 
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Fig. 6: Graph of γ  with s  for various values of δ  

 
Fig. 7: f ( )η′  for various values of λ  

 
Fig. 8: ( )θ η   for various values of λ  

Figure 7-8 exhibit the velocity and temperature 
profiles respectively for the velocity slip parameterλ . 
The free stream boundary conditions (8) are satisfied 
asymptotically in these figures, which validates the 
obtained numerical results. It is also noticed that 
thermal as well as momentum boundary layer 
thickness for the first solution is lower than that of 
the second solution. Figure 7 shows for the 1st 
solution, an increase in the velocity of the fluid 
throughout the boundary layer region is observed, 

with an increase in the velocity slip parameter λ , 
while for the 2nd solution, near the wall, the velocity 
increases with λ and away from the wall, reverse 
pattern is observed. We also observed that, due to 
increasing value of λ  the momentum boundary layer 
become thinnerfor the first solution and opposite 
nature is observed for the 2nd solution.The 
temperature at a point near the wall decreases for an 
increase in λ  for the 1st solution and for the 2nd 
solution, the nature is reversed which is shown in 
Fig.8. 

 
Fig. 9: ( )θ η  for various values of δ  

 
Fig. 10: f ( )η′  for various values of s  

Figure 9 gives the variation of temperature profile 
within the boundary layer with thermal slip 
parameter. For both first and second solutions the 
temperature profile shows a smoothly decreasing 
pattern withη . It is also observed that for both the 
solutions, the temperature distribution decreases with 
the increase in thermal slip parameter. Further, it is 
noted that the change in temperature is higher near 
the sheet withthermal slip parameter, but very less 
away from the sheet. As seen in Fig. 4, temperature is 
found to decrease because thermal slip parameter 
reduces the rate of heat transfer.Figure 10 depict the 
variation in velocity with mass suction. It is noted 
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that mass suction parameter increases the velocity for 
first solution branch, while reverse pattern is seen for 
the second solution. 
 
 
6 Conclusions 
In summary, the mathematical model of viscous flow 
and heat transfer past a permeable exponentially 
shrinking sheet with mass flux at the wall and slip 
effect has been solved numerically using MATLAB 
BVP solver bvpc45 to show the influence of velocity 
slip parameter λ , thermal slip parameter δ  and mass 
suction parameter s . It is found that dual solutions 
exist beyond a certain range of mass suction 
parameter and the range of mass suction parameter 
for which the solution exists expands with the 
velocity slip parameter. Linear stability of first 
solution is noted while second solution seems to be 
unstable. The stability of flow increases with 
increasing mass suction parameter s  and velocity 
slip parameter λ . 
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